オススメ☆新着記事


<2025年9月20日のささやき>
気軽に授業参加してほしくて,
授業予約サイトを作りました。

☆授業予約サイト公開記念!☆
10月18日まで半額セール!
1回50分,1,100円(税込)!
授業予約はこちら


予約後は,必ず公式ラインから
具体的なご要望を
おっしゃってください。

\大喜びで反応します☆/
友だち追加



2点を通る直線の式を求めよう!

2点を通る直線の式を求めてみよう!

 

 

 

次の問題にチャレンジしてみよう!

 

<問題> 次の条件を満たす一次関数の式を求めなさい。

 

(5)グラフが(ー6,1)(3,ー5)を通る。

 

 

 

ちょっと難しいかもしれません,2種類ほど解き方があります。

 

 

 

 

 

正解はこちら!

 

<問題> 次の条件を満たす一次関数の式を求めなさい。

(5)グラフが(ー6,1)(3,ー5)を通る。

 

こたえ \(\displaystyle y=-\frac{2}{3}x-3\)

 

 

 

 

 

求め方は2種類あります。

どちらかお好みで選んでくださいね。

 

 

 

 

まずは,\(\displaystyle 変化の割合=\frac{yの増加量}{xの増加量}\)を使った方法から。

条件の2点(ー6,1)(3,ー5)を見たときの,xの増加量とyの増加量をチェックします。

 

xは ー6 → 3    xの増加量は+9です。

yは  1 → ー5   yの増加量はー6です。

 

ですから,\(\displaystyle 変化の割合=\frac{yの増加量}{xの増加量}\) にあてはめると

 

\(\displaystyle 変化の割合=\frac{yの増加量}{xの増加量}=\frac{-6}{9}=-\frac{2}{3}\) になります。

 

よって,\(\displaystyle y=- \frac{2}{3}x+b\) までわかりました。

 

 

あとは,2点どちらかを代入してbも求めましょう。

(ー6,1)を代入してみますと,

 

\(\displaystyle 1=- \frac{2}{3}×(-6)+b\)

\(b=-3\) が出ますね。

 

 

 

 

2つの解き方。

 

\(y=ax+b\) に代入する方法もオススメです。

これは,連立方程式になります。

 

2点(ー6,1)(3,ー5)をそれぞれ \(y=ax+b\) に代入するのです。

 

そうすると,

\(\left\{\array{1&=-6a+b\\-5&=3a+b}\right.\)

 

この連立方程式を求めると,

\(\displaystyle a=- \frac{2}{3} , b=-3\)

と出ます。

 

 

 

 

解説授業はこちら!

生徒さんとの授業動画です。4分1秒です。

ぜひみなさんもチャレンジしてみてください。

 

 

 

 

レビューの平均

4.4
5つ星中4.4つ星です!(217人のお客様のデータ)
最高72%
良かった13%
ふつう4%
いまいち3%
最悪8%

お客様の声

最高!

とてもわかりやすかったです❣️

アスミラからの返信

コメントありがとうございます。

勉強がんばっているねえ。

いい!

分かりやすい説明ありがとう!

勉強楽しいです!

ᴗ ੭''

アスミラからの返信

前向きなコメント!ありがとうございます。

すごくわかりやすかった!!!

中部地方がとてもわかりやすかったです!近畿地方のテストに出やすいやつもつくってほしいです!わがままですみません!とてもわかりやすかったです!

ねむねむ

アスミラからの返信

コメントありがとうございます。

近畿地方の特集もあるよ!探して見てね☆

納得!

教科書には載っていない覚え方やクイズ形式になっているのが良かったです。

中間テスト前にこのサイトを見て良かったです!

ありがとうございます!

ちり

アスミラからの返信

コメントありがとうございます。

地理の記事のことかな,中間テストがんばれ☆

よくわからない

KJ

アスミラからの返信

リアルな意見をありがとうございます。

申し訳なかったです。

また困ったときにお越しください。

ガチ感謝🙇

ちょうど苦手なところだったし、テスト期間に見たのでよかったです👍

解説もあってわかりやすかったです^^

るう

アスミラからの返信

コメントありがとうございます。

中間テストかな,ファイト☆

応用

応用問題のやつ二次関数上と書いてないから点が無限に出るんじゃないんですか

アスミラからの返信

申し訳ないです。どの問題か教えてくださーい。

ちゃんと問題設定しているはずなんだけども。。。

中間

It’s the best!

Anonymous

アスミラからの返信

コメントありがとうございます!

中間テストがんばってね。

わかりやすい!

東アジアの範囲分かりやすく丁寧にまとめられてて最高でした!

テス勉中

アスミラからの返信

コメントありがとうございます,また来てね!

中間テスト

中間テストの範囲で、かなり出そうなので、めっちゃ助かります!!

中1です

アスミラからの返信

テストがんばれ☆

ご家庭レビュー,お待ちしています!